Inhibition of chloride secretion in human bronchial epithelial cells by cigarette smoke extract.
نویسندگان
چکیده
Chronic bronchitis, a disease mainly of cigarette smokers, shares many clinical features with cystic fibrosis, a disease of altered ion transport, suggesting that the negative effects of cigarette smoke on mucociliary clearance may be mediated through alterations in ion transport. We tested the hypothesis that cigarette smoke extract would inhibit chloride secretion in human bronchial epithelial cells. In agreement with studies in canine trachea, cigarette smoke extract inhibited net chloride secretion without affecting sodium transport. We performed microelectrode impalements and impedance analysis studies to investigate the physiological mechanisms of this inhibition. These data demonstrated that cigarette smoke extract caused an acute increase in membrane resistances in conjunction with apical membrane hyperpolarization, an effect consistent with inhibition of an apical membrane anion conductance. After this acute phase, both membrane resistances decreased while membrane potentials continued to hyperpolarize, indicating that cigarette smoke extract also inhibited the basolateral entry of chloride into the cell. Furthermore, cigarette smoke extract caused an increase in mucin secretion. Therefore, the ion transport phenotype of human bronchial epithelial cells exposed to cigarette smoke extract is similar to that of cystic fibrosis epithelia in which there is sodium absorption out of proportion to chloride secretion in the setting of increased mucus secretion.
منابع مشابه
Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells
Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis ...
متن کاملCigarette smoke extract reduces VEGF in primary human airway epithelial cells.
Reduced vascular endothelial growth factor (VEGF) has been reported in bronchoalveolar lavage fluid and lungs of severe emphysema patients. Airway epithelial cells (AEC) are exposed to various environmental insults like cigarette smoke and bacterial infections, but their direct effect on VEGF production in well-differentiated primary human AEC remains unclear. The current authors determined the...
متن کاملThe inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells
OBJECTIVES Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence) or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE) induces senescence of bronchial epithelial cells; and Cordycep...
متن کاملA histological study on the effects of aqueous extract of Althea officinalis on epithelial and submucosal mucocilliary system of rat trachea following inhalation of cigarette smoke
The contents of cigarette smoke (gaseous and solid phases) have been attributed to a variety of diseases in the respiratory and cardiovascular systems and have been associated with development of different types of cancers. In respiratory system, these compounds specially cause epithelial cell injury, and interfere with mucocilliary transport (MTC). Various parts of Althea officinalis (family M...
متن کاملA histological study on the effects of aqueous extract of Althea officinalis on epithelial and submucosal mucocilliary system of rat trachea following inhalation of cigarette smoke
The contents of cigarette smoke (gaseous and solid phases) have been attributed to a variety of diseases in the respiratory and cardiovascular systems and have been associated with development of different types of cancers. In respiratory system, these compounds specially cause epithelial cell injury, and interfere with mucocilliary transport (MTC). Various parts of Althea officinalis (family M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 288 5 شماره
صفحات -
تاریخ انتشار 2005